GOVT. POLYTECHNIC, KORAPUT
 LESSON PLAN (ENGG. MATHEMATICS II)

Discipline: Electrical/Mech anical Engg.	Semester: $2^{\text {nd }}$	Name of the teaching faculty: D.P Tripathy, Lect. Mathematics
Subject: Engg. Mathematics II Th 3	No. of days/week class allotted: 5+1	Semester from date: 15/3/22 To date: 12/7/22
Week	Class Day	Theory Topics
$1^{\text {II }}$	$1^{\text {st }}$	Chapter 2: LIMITS and CONTINUITY: a) Definition of a function b) Types of functions i) Constant function, ii) identity function iii) Absolute value function iv) The greatest integer function with examples
	$2^{\text {nd }}$	v) Trigonometric function with example vi) Exponential function vii) Logarithmic function With examples
	$3^{\text {rd }}$	c) Introduction of limit: definition, example d) Existence of limit with example
	$4^{\text {th }}$	e) Methods of evaluation of limit
	$5^{\text {th }}$	Methods of evaluation of limit continues with some examples
	$6^{\text {th }}$ (Tutorial class)	problems on existence of limit and evaluation of limit
$2^{\text {nd }}$	$1{ }^{\text {st }}$	i) $\quad \lim _{x \rightarrow 0} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}$ ii) $\quad \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e} a$ Some problems using these formulae
	$2^{\text {nd }}$	iii) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$ iv) $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e$ Some problems using these formulae
	$3^{\text {rd }}$	v) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$ vi) $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$ Some problems using these formulae
	$4^{\text {th }}$	vii) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ viii) $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$ Some problems using these formulae
	$5^{\text {th }}$	f) Definition of continuity of a function at a point, Existence of continuity with example

GOVT. POLYTECHNIC, KORAPUT LESSON PLAN (ENGG. MATHEMATICS II)

	$6^{\text {th }}$ (Tutorial class)	Problems on limit and continuity
$3^{\text {r }}$	$1{ }^{\text {st }}$	Chapter 3: DERIVATIVES: a) Derivative of a function at a point b) Algebra of derivative
	$2^{\text {nd }}$	c) Derivative of standard functions: $x^{n}, a^{x}, \log _{a} x, e^{x}$
	$3^{\text {rad }}$	Derivative of standard functions continues: $\sin x, \cos x, \tan x$
	$4^{\text {th }}$	Derivative of standard functions continues: $\cot x, \sec x, \csc x, \sin ^{-1} x$
	$5^{\text {th }}$	Derivative of standard functions continues: $\cos ^{-1} x, \tan ^{-1} x, \cot ^{-1} x$
	$6^{\text {th }}$ (Tutorial class)	Problem solving on trigonometric functions
$4^{\text {th }}$	$1{ }^{\text {st }}$	Derivative of standard functions continues: $\sec ^{-1} x, \csc ^{-1} x$ d) Derivatives of composite function
	$2^{\text {nd }}$	Derivatives of composite function(Chain rule) continues with examples
	$3^{\text {rd }}$	Derivatives of composite function(Chain rule) continues with examples
	$4^{\text {th }}$	e) Methods of differentiation of i) Parametric function with examples
	$5^{\text {th }}$	Methods of differentiation of ii) Implicit function with examples
	$6^{\text {th }}$ (Tutorial class)	Solving problems on derivatives of parametric function and implicit function
$5^{\text {th }}$	$1^{\text {st }}$	Methods of differentiation of iii) Logarithmic function with example
	$2^{\text {nd }}$	Methods of differentiation of iv) A function wrt another function with example
	$3^{\text {rd }}$	f) Applications of derivatives: i) Successive differentiation (up to second order) Some problems on successive differentiation
	$4^{\text {th }}$	Solving problems on successive differentiation
	$5^{\text {th }}$	ii) Partial differentiation (function of two variables up to second order)
	$6^{\text {th }}$ (Tutorial class)	Problems on derivative of logarithmic function and successive differentiation.
$6^{\text {th }}$	$1{ }^{\text {st }}$	Partial differentiation continues
	$2^{\text {nd }}$	Some more problems on partial differentiation
	$3^{\text {rd }}$	Revision of derivative
	$4^{\text {th }}$	Chapter 4: INTEGRATION: a) Definition of integration as inverse of differentiation b) Integral of standard functions
	$5^{\text {th }}$	c) Methods of integration: i) Integration by substitution with examples

GOVT. POLYTECHNIC, KORAPUT
LESSON PLAN (ENGG. MATHEMATICS II)

	$6^{\text {th }}$ (Tutorial class)	Problems on integration by substitution
$7{ }^{\text {th }}$	$1{ }^{\text {st }}$	ii) Integration by parts with examples
	$2^{\text {nd }}$	Problems on integration by parts
	$3^{\text {rd }}$	d) Integration of the following forms i) $\int \frac{d x}{x^{2}+a^{2}}$ ii) $\int \frac{d x}{x^{2}-a^{2}}$ iii) $\int \frac{d x}{a^{2}-x^{2}}$ iv) $\int \frac{d x}{\sqrt{x^{2}+a^{2}}}$ with examples
	$4^{\text {th }}$	Integration of the following forms $\begin{aligned} & \text { v) } \int \frac{d x}{\sqrt{x^{2}-a^{2}}} \\ & \text { vi) } \int \frac{d x}{\sqrt{a^{2}-x^{2}}} \text { vii) } \\ & \int \frac{d x}{x \sqrt{x^{2}+a^{2}}} \\ & \text { examples }\end{aligned}$
	$5^{\text {th }}$	Integration of the following forms ix) $\sqrt{a^{2}+x^{2}} d x \quad$ x) $\sqrt{x^{2}-a^{2}} d x$ with problems
	$6^{\text {th }}$ (Tutorial class)	Problems on integration by parts
$8^{\text {th }}$	$1^{\text {st }}$	e) Definite integrals and properties i) $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ ii) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$ With problems
	$2^{\text {nd }}$	iii) $\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x, a<b<c$ $\begin{aligned} \int_{-a}^{a} f(x) d x & =0, \text { if } f(x)=\text { odd } \\ & =2 \int_{0}^{a} f(x) d x, \text { if } f(x)=\text { even } \end{aligned}$ With examples
	$3^{\text {rd }}$	Solving problems on properties of definite integration
	$4^{\text {th }}$	f) Application of integration i) Area enclosed by a curve and X -axis and example
	$5^{\text {th }}$	ii) Area of a circle with centre at origin
	$6^{\text {th }}$ (Tutorial class)	Solving problems on application of integration
$9^{\text {th }}$	$1^{\text {st }}$	Chapter 5: DIFFERENTIAL EQUATION: Definition, ODE, PDE, a) Order and degree of a differential equation

